MEMOIRE

Influence des propriétés de surface sur les propriétés mécaniques et hydrauliques des sols.

Fatma MESSAOUDI

Responsable du stage : Véronique CHAPLAIN
Laboratoire d’accueil : INRA Versailles, Unité Pessac
Soutenance : le 25 septembre 2009
REMERCIEMENTS

Je tiens tout d’abord à adresser mes sincères remerciements à mon maître de stage, Véronique CHAPLAIN, qui m’a offert la possibilité d’intégrer l’unité PESSAC à l’INRA Versailles et d’enrichir ainsi mon expérience du milieu de la recherche. Je lui exprime toute ma reconnaissance pour la patience qu’elle a manifesté à mon égard durant ce stage et l’élaboration de ce mémoire et pour tous les conseils qu’elle m’a prodigué.

Mes remerciements vont également au directeur du laboratoire PESSAC (INRA de Versailles), Christian MOUGIN, pour son accueil au laboratoire.

Je remercie également toute l’équipe du plateau physique des sols, Ghislaine DELARUE, Françoise ELSASS, Nelly WOLFF et Jeanne Chantal DUR pour leur disponibilité et leurs conseils avisés en matière de physico-chimie des sols.

Je tiens à témoigner tout particulièrement mon estime et ma reconnaissance, à Cyril KAO, Directeur Scientifique adjoint de l’ENGREF et mon tuteur scientifique, qui m’a toujours conseillé. Qu’il trouve ici le témoignage de mon grand respect et de ma profonde gratitude.

Je remercie également l’ensemble des chercheurs, ingénieurs, thésards et personnels de l’unité Pessac pour leur accueil chaleureux.

Je tiens également à remercier M. le président du jury et tous les membres d’avoir, si complaisamment, accepté de juger ce travail.

Je remercie enfin tous les étudiants de M1-M2, et plus particulièrement Antonine, Mylène et Ibou, pour la bonne entente que nous avons partagée et la bonne humeur qu’ils ont su faire régner dans « le bureau des stagiaires ».

Merci à toutes et à tous.
TABLE DE MATIERES .. 4
RESUME .. 5
I. INTRODUCTION .. 6
 I.1 DÉGRADATION DES SOLS ASSOCIÉE À L’AGRICULTURE INTENSIVE ... 6
 I.2 LES SOLS MILIEUX COMPLEXES ORGANISÉS ... 7
 I.3 LES PROPRIÉTÉS HYDRAULIQUES DES SOLS ... 11
 I.5 APPROCHE HYDROMECAHNIQUE DE LA RÉSISTANCE MÉCANIQUE À LA COMPRESSION DES SOLS CULTIVES .. 12
 I.6 PROPRIÉTÉS DE SURFACE DES SOLS ET ÉTAT HYDRIQUE .. 15
II. MATERIELS ET METHODES ... 17
 II.1 CONSTITUANTS DES SOLS ARTIFICIELS ... 17
 II.1.1 Les polymères amphiphiles ... 17
 II.1.2 Choix du matériau : Sable NE14 de Fontainebleau ... 17
 II.2 PRÉPARATION DES SOLS ARTIFICIELS .. 19
 II.2.1 Modification des sables ... 19
 II.2.2 La préparation des mélanges .. 19
 II.3 PROPRIÉTÉS HYDROPHILE/HYDROPOBE DES SABLES .. 20
 II.4 ÉSSAI DE COMPACTION .. 21
 II.4.1 Oedomètre hydraulique ... 21
 II.4.2 Positionnement de l’échantillon .. 22
 II.4.3 Construction des courbes de compression et détermination de Pc et Cc 22
 II.5 ÉSSAI DE PERMEABILITE SOUS CONTRAINTE .. 24
III. RESULTATS .. 26
 III.1 CARACTERISATION DES SOLS ARTIFICIELS ... 26
 III.2 ÉTUDE DE L’HYDROPHOBICITE DES SABLES ... 28
 III.3 EFFETS DES PROPRIÉTÉS DE SURFACE SUR LES PROPRIÉTÉS MÉCANIQUES 29
 III.4 EFFETS DES PROPRIÉTÉS DE SURFACE (AGREGATION + HYDROPHOBICITE) SUR LA PERMEABILITÉ DES SOLS .. 33
 III.4.1 Étude des comportement de mélanges lors de la phase de saturation 33
 III.4.2 Conductivité hydraulique des mélanges ... 34
IV. DISCUSSION ET PERSPECTIVES. .. 38
REFERENCES BIBLIOGRAPHIQUES ... 39
Résumé

Les sols sont devenus une ressource naturelle à préserver, en particulier les sols agricoles qui occupent la moitié de terres en Europe. L’agronomie doit satisfaire à la double exigence d’augmentation de la production et du maintien de la qualité des ressources. La structure des sols est un facteur clé dans la qualité de sols car elle détermine les phénomènes de transport vers les autres compartiments (air-eau) de la biosphère. Associée aux propriétés de surface (balance hydrophobe–hydrophile), elle détermine également le devenir de contaminants organiques (rétention et biodégradation). La structure des sols influencent fortement les propriétés physiques des sols : conductivité hydraulique et propriétés mécaniques. Ces propriétés dépendent d’une grande variabilité spatio-temporelle au champ. L’objectif de ce stage est de concevoir des sols artificiels afin de mesurer l’influence des propriétés de surface des sols et de l’agrégation sur ces deux propriétés physiques. Les sols sont des empilements de sable. Les propriétés de surface des sables sont modifiées par l’adsorption de polymères synthétiques qui permettent de contrôler la balance hydrophobe-hydrophile des surfaces. Des sols de composition variable sont constitués de mélanges de sable et de sable non modifiés, faisant ainsi varier le taux d'agrégation et l’hydrophobicité. A saturation, la pression de pré-consolidation Pc d'un sol dépend de son degré d’agrégation ; plus le sol est agrégé plus il supporte le tassement jusqu'à un taux d'agrégation optimal situé entre 30 et 40 % et une Pc maximale de 113 kPa. Au-delà de ce taux, Pc chute et l'échantillon se déforme de façon permanente et irréversible. L’hydrophobicité des surfaces détermine leur affinité vis-à-vis de l’eau. Pour des sols artificiels moyennement hydrophobes, la conductivité hydraulique du sol diminue avec l’hydrophobicité. Dans tous les cas la balance hydrophobe-hydrophile des sols influence la dynamique des systèmes et limite l’application de la loi de Darcy.

Mots clefs : Agrégation, hydrophobicité, tassement, conductivité hydraulique.

Abstract

Soils are now a natural resource that has to be protected, especially agricultural soils which occupied half of Europe's land. Agronomy must meet the dual demands of increasing production and maintaining quality resources. The soil structure is a key factor in soil quality because it determines the phenomena of transport to other compartments (air-water) of the biosphere. Combined with surface properties (hydrophobic-hydrophilic balance), it also determines the fate of organic contaminants (retention and biodegradation). The soil structure strongly influences the soil physical properties: hydraulic conductivity and mechanical properties. These properties show great spatial and temporal variability in the field. The aim of this work is to conceive artificial soils to show the contribution of soil surface properties and aggregation in both physical properties. Artificial soils are packing of soils. The surface properties of sand were modified by adsorption of polymers that controls the hydrophilic-hydrophobic balance soils with a variable composition were built by mixing sand and modified sands. They represent different aggregation rate and hydrophobicity. In saturated soils, the pre-compression pressure varies with the degree of aggregation to reach a maximum value of 113 kPa with a 30-40% of modified sand amount. The hydraulic conductivity of moderate wettable soils decreased. In every case, the wetting affected the dynamic of the system. At a rate of hydrophobicity greater than 30%, saturation of the sample needs a sufficiently long time, Darcy's law is no longer applicable due to the absence of linear fields.

Key Words: Agregation, hydrophobicity, compaction, hydraulic conductivity.
I. INTRODUCTION

La surface continentale est une composante importante de l’écosystème global car elle est le siège des activités humaines et de son développement. De par sa position d’interface entre les autres compartiments (atmosphère, eaux), elle participe au cycle de l’eau et aux grands cycles géochimiques (carbone, azote). [L. Citeau et al]. Le sol est « la formation naturelle de surface à structure meuble et d’épaisseur variable… ».

La fonction « support de cultures » pour la production d’aliments a longtemps été la seule fonction reconnue. Les fonctions environnementales sont aujourd’hui d’avantage prises en compte. Elles résultent principalement de la position d’interface du sol avec les autres compartiments. A l’interface sol-air, le sol joue un rôle tampon vis-à-vis des pluies acides ou de l’apport d’ammonium associé à la fertilisation azotée. Son rôle dans la séquestration du gaz carbonique au sein des matières organiques est de plus en plus étudié ainsi que la production de gaz à effet de serre (méthane et dioxyde d’azote). A l’interface sol-eau, le sol est un filtre épurateur vis-à-vis des engrais, produits phytosanitaires utilisés en agriculture intensive. Cette fonction épuratrice s’étend aux autres contaminants organiques, d’origine domestique ou industrielle incorporés au sol à travers la valorisation agricole de déchets organiques. Le sol a donc une fonction protectrice vis-à-vis des compartiments aquatiques (eaux souterraines et eaux de surface). Le sol est le biomatériau le plus complexe de la planète, c’est un réservoir « écologique » de gènes et d’organismes, support de la biodiversité par la diversité des « habitats » qu’ils génèrent. Du fait de sa capacité à accumuler les contaminants le sol est enfin une source de contamination avec des risques potentiels de relarguage dans les eaux.

Les sols agricoles représentent aujourd’hui la moitié des terres en Europe. L’agronomie doit satisfaire la demande croissante de production et garantir le maintien de la qualité des milieux et de la biodiversité.

I.1 Dégradation des sols associée à l’agriculture intensive

Curieusement, en dépit de cette position centrale, dans la sphère continentale, la protection des sols en tant que ressource est nettement moins avancée sur le plan politique que la protection des eaux, de l’air et la biodiversité. En 2007, le parlement européen reconnaît à travers la directive « sol ». La dégradation de la qualité de sols et l’accélération de la dégradation due à certaines pratiques agricoles et sylvicoles. Toutefois, la directive reste centrée sur la définition des sites contaminés et souligne l’importance des sols dans la maîtrise des changements climatiques globaux.

Les processus physiques ou chimiques de dégradation : érosion, compaction, sécheresse, diminution des teneurs en carbone organique, salinisation ont été identifiés comme des processus de dégradation majeurs. La contamination chimique distingue les pollutions localisées (sites contaminés) et la pollution diffuse liée aux activités agricoles. A l’inverse, l’acidification des sols n’est pas reconnue en tant que menace malgré ses conséquences en terme de toxicité aluminique et d’augmentation de la mobilité des éléments traces métalliques.

La dégradation biologique des sols n’est pas recensée du fait de l’absence de critères d’évaluation. Pour le moment la dégradation du compartiment biologique est vue comme une conséquence des autres processus de dégradation.
L’écotoxicologie est l’étude de l’impact des contaminants (organiques ou minéraux) sur le fonctionnement des milieux. Les recherches en écotoxicologie se sont initialement développées dans les milieux aquatiques en se focalisant sur l’impact sur le compartiment biologique. Les effets biologiques observés ont fait apparaître la diversité des contaminations chimiques, incluant des perturbateurs endocriniens. L’écotoxicologie terrestre regroupe l’étude des processus régissant le devenir des contaminants, décrit à travers des indicateurs d’exposition, et les impacts sur le compartiment biologique des sols (micro-organismes, macro faune…) conduisant à des indicateurs d’impact (activité enzymatique …). Les processus impliqués dans le devenir de molécules organiques telles que les molécules phytosanitaires conduisent à l’accumulation de ces molécules dans les sols ou à leur dissipation dans les autres compartiments ou à leur dégradation chimique ou biologique. Ces processus dépendent des propriétés physico-chimiques :
- de la molécule pesticide comme la solubilité dans l’eau ou différents solvants organiques,…
- des sols :
 o les propriétés de surfaces qui déterminent la rétention de contaminants organique tels que les molécules pesticides,
 o l’agrégation des éléments fins, qui influence les cinétiques de rétention des contaminants,
 o l’état hydrique,
 o la structure des sols décrite par la géométrie de l’espace poral qui influence les processus de transferts (conductivité hydraulique).

Ces caractéristiques des sols (propriétés de surface-structure –état hydrique) sont couplées, varient dans le temps et dans l’espace. Elles sont fonction de l’échelle d’observation et déterminent les propriétés physiques des sols telle que la conductivité hydraulique et la résistance mécanique au tassement. Les propriétés de surface sont pour l’instant rarement considérées dans ces propriétés et leurs couplages. Ce point est un des objectifs de mon stage. La suite de l’introduction présente les sols, les propriétés physiques, la description des propriétés de surface.

I.2 Les sols milieux complexes organisés

Le sol se forme par altération d'une roche superficielle ou d’un matériau d’apport sous l'influence du climat, de la végétation ou d'organismes, (Figure1).
De la roche mère très dense, on passe à un matériau meuble, poreux, comprenant de nombreux organismes. La pédogenèse se schématisse en trois phases :
1. Altération de la roche mère
2. Milieu de vie et intégration des matières organiques

De nombreux phénomènes physiques, chimiques et biologiques successifs simultanés ou couplés sont impliqués dans la pédogenèse. Ces phénomènes sont caractérisés par des cinétiques différentes. Les durées concernées varient de la seconde au millénaire et plus selon les phénomènes. Malgré cette complexité apparente dans les processus, le développement du sol se propage avec le temps selon une structuration assez simple en couches superposées appelées *horizons* formant par superposition un *profil* (figure 2) caractéristique du milieu, et dépendant de l’action conjuguée du climat et de la végétation. [van Oort 1984]
D’un point de vue opposé, les particules élémentaires du sol s’associent pour former des agrégats organo-minéraux caractérisés par la microporosité. L’assemblage de ces agrégats génère des espaces de plus grande taille, les macropores. La description de la structure repose sur l’identification et la caractérisation des assemblages des particules primaires et des particules secondaires. Ce sont les arrangements de ces assemblages qui donnent leur structure aux horizons du sol (Marshall, 1962 ; Baver et al, 1972). Ils apparaissent à l’observation comme des volumes plus au moins grands délimités par des surfaces de moindre résistance qui prennent naissance sous l’action de perturbations mécaniques d’origine naturelle dues à la pédogenèse ou d’origine artificielle dues aux passages de divers outils dans le sol aux interactions avec le climat et la végétation.

Les sols sont milieux à porosité multiples sont des milieux triphasiques. Les proportions des trois phases ; solide, liquide et gazeuse varient en fonction, notamment, de l’état hydrique des sols. La porosité du milieu est définie par le volume de vide (eau+air) sur le volume total un rapport de volume. Les indices (air_eau_vide) sont défini par rapport au volume de la phase solide.
La phase solide occupe 40 à 70 % du volume total selon le type de sol. Cette proportion dépend du tassement du sol et est reliée à sa masse volumique apparente. La partie restante est occupée par les fluides (eau-air) en fonction de l’état hydrique.

La phase solide se caractérise par la distribution granulométrique des constituants répartie en une fraction argileuse, limoneuse et sableuse :

<table>
<thead>
<tr>
<th>Classe granulométrique</th>
<th>Taille (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terre fine argile</td>
<td>< 2µm</td>
</tr>
<tr>
<td>limon</td>
<td>2-20 µm (ou 2-50 µm)</td>
</tr>
<tr>
<td>sable fin</td>
<td>20-200 µm</td>
</tr>
<tr>
<td>sable grossier</td>
<td>200-2000 µm</td>
</tr>
<tr>
<td>Eléments graviers</td>
<td>2-20 mm</td>
</tr>
<tr>
<td>Grossiers cailloux</td>
<td>> 20 mm</td>
</tr>
</tbody>
</table>

Tableau 1 : Classes granulométriques des sols

Les matières organiques, d’origine végétale, biologique ou anthropiques participent à la structuration des sols. Les caractéristiques physico-chimiques du sol présentent une
variabilité temporelle dont il faut évidemment tenir compte pour l’étudier. Certaines varient suffisamment lentement pour être considérées comme constantes à l’échelle humaine ; c’est souvent le cas de la composition granulométrique par exemple. D’autres, au contraire, varient rapidement et nécessitent des observations rapprochées pour être correctement observées et décrites. C’est, par exemple, le cas de la teneur en eau et de la composition ionique du sol. La variabilité spatiale des caractéristiques physico-chimiques telle que la texture et la répartition des constituants fins, reflète en partie l’hétérogénéité de la roche-mère, probablement exacerbé par la suite par les différences de cinétiques des processus impliqués dans la pédogénèse. [van Oort 1984]

I.3 Les propriétés hydrauliques de sols

La variabilité spatio-temporelle des propriétés hydrauliques a une origine naturelle liée au climat qui influence la structure des sols à travers les effets du gel et des cycles de dessiccation/humectation). Mapa (1986) montre un effet important d’un cycle dessiccation/humectation sur la conductivité hydraulique au voisinage de la saturation. Les processus responsables de cet effet ne sont pas encore élucidés. La variabilité spatio-temporelle des propriétés hydrauliques provient également du couplage avec le compartiment biologique essentiellement via les galeries de ver de terre. En définitive, malgré la pertinence de la conductivité hydraulique dans la prédiction des transferts, il s’avère souvent difficile de faire la part des choses lorsqu’il s’agit de distinguer l’effet anthropique de la variabilité naturelle.
I.5 Approche hydromécanique de la résistance mécanique à la compression des sols cultivés

Le tassement est lié à la mécanisation des activités agricoles et forestières, il résulte des multiples passages d’engins agricoles et forestiers de plus en plus lourds. Du fait des modifications importantes de la structure du sol qu’il engendre (au niveau des couches travaillées et des couches sous-jacentes), le tassement peut avoir des conséquences importantes à la fois sur la production végétale et l’environnement. La compaction réduit les capacités d’aération et d’infiltration des sols, et limite l’enracinement des cultures. Le tassement aboutit notamment à une augmentation de la résistance mécanique et à la diminution des capacités de transfert de masse des sols du fait de leur densification (Radford et al, 2000 ; Hamza et Anderson, 2005). Par conséquent, le compactage des sols accentue le ruissellement et les phénomènes d’érosion hydrique en diminuant leurs conductivités hydrauliques (Renault et Stengel, 1994).

La résistance mécanique d’un sol n’est pas une propriété permanente du sol (Horn et Lebert, 1994) : elle dépend de facteurs qui évoluent lentement, comme la teneur en matière organique, de facteurs qui fluctuent plus rapidement (i) l’état structural (agrégation du sol) sous l’action des opérations du travail du sol (ii) l’état hydrique sous l’action des conditions climatiques (cycles humectation / dessiccation).

La résistance mécanique du sol est décrite par la relation contrainte-déformation. Les courbes de compression représentent la variation de l’indice de vide (e) en fonction du logarithme de la pression verticale exercée e-logσv (Figure 4) sur l’échantillon. Ces courbes conduisent à la valeur des deux paramètres mécaniques essentiels qui sont la pression de préconsolidation (Pc) et l’indice de compression ou de compressibilité (Cc).

La pression de préconsolidation indique la contrainte maximale que supporte le sol sans se déformer de façon permanente.

L’indice de compression correspond à la pente de la courbe de compression et indique le taux de déformation u delà de ce seuil.

Ces courbes de compression sont mesurées au laboratoire par des essais oedométriques en conditions confinées drainées ou non drainées. Le volume des échantillons varie de 50 à 100 cm3 selon les équipements. Les échantillons peuvent être réalisés sur des échantillons de sols remaniés ou des échantillons de sol de structure intact à différents états hydriques. La mesure consiste à imposer à la surface de l’échantillon une succession connue de pressions et à mesurer la déformation de l’échantillon de sol en réponse à cette contrainte pour chaque valeur de pression. À la fin de la compression l’échantillon, la pression exercée sur l’échantillon est relâchée par paliers successifs : c’est la phase de relâchement. Elle montre l’intensité relative de la déformation irréversible et réversible.
En géotechnique, le temps de chargement pour chaque palier vertical de contrainte verticale σ_v appliquée est en général de 24h pour assurer un déplacement bien défini. Pour la caractérisation des sols agricoles, des temps de charge de 5 minutes ont été retenus pour simuler le chargement rapide lors du passage d’un engin agricole qui peut être estimé inférieur à 0.1s. [Kai]. Les travaux décrits dans la littérature indiquent que les principaux facteurs de variation des deux paramètres mécaniques P_c et C_c sont la texture, l’état hydrique et structural du sol ;

Figure 4 : Courbe de compression (e-logσ_v) entre l’indice des vides total e et la contrainte verticale (σ_v)
Des résultats récents obtenus au laboratoire sur des échantillons de sol remaniés, montre que les paramètres Cc et Pc sont de fonctions continues de l’indice de vide initial (Variation linéaire pour Cc et exponentielle ou linéaire pour Pc en fonction du type de sol) Chaplain et al. 2009. Ces relations sont conservées pour l’indice de compression mais perdues pour la pression de pré-consolidation lorsque les mesures sont réalisées sur des échantillons de structure intacte.

Figure 5 : Pression de préconsolidation pour un sol non remanié

Sur la figure 5 la courbe représente la variation exponentielle de Pc obtenue sur des échantillons remaniés (cercles). Les carrés représentent les mesures réalisées sur des échantillons de structure intacte prélevés sur la parcelle (site de Boigneville). Dans tous les cas, le potentiel hydrique est fixe égal à 2.5. Les hypothèses formulées pour expliquer cette variabilité sur des échantillons prélevés au champ sont la variabilité de la structure, agrégation et variabilité de l’hydrophobicité des sols en lien avec les pratiques agricoles. [Simon 2009]

Le tassement se produit lorsqu’une pression est appliquée à la surface du sol. Il modifie les propriétés du sol, telles que la porosité et la perméabilité. Les pores se trouvent déconnectés et le déplacement de gaz et d’eau dans le sol est entravé, ce qui conduit à une disponibilité réduite de l’eau et de l’oxygène.

Kooistra (1994) a montré que la porosité totale est souvent moins affectée par le compactage que la macroporosité ; ceci est du à une augmentation de la microporosité. De même, il a été démontré que le compactage n’affecte pas la porosité texturale (porosité matricielle), cependant il crée des pores structurelles reliques qui ne sont accessibles qu’à travers les micropores de la matrice, Richard et al. (2001). La présence de pores reliques explique les différences de propriétés hydrodynamiques entre les deux états structuraux créés (avant et après compactage). Elle pourrait constituer un indicateur de l’effet du tassement sur les propriétés hydrodynamiques d’un sol. La modification de l’espace poral liée au compactage concerne donc non seulement la diminution de l’espace poral structural, mais aussi les relations entre les pores texturaux et structuraux.
I.6 Propriétés de surface des sols et état hydrique.

Les propriétés de surface d’un sol sont dues à la présence (i) de charges à la surface de la phase solide minérale, organique et biologique (ii) de groupements chimiques plus ou moins hydrophobes au sein de la matière organique des sols qui influencent l’affinité de la matrice solide pour l’eau. Les charges cationiques ou anioniques se caractérisent par la variabilité de leur nature chimique et leur répartition spatiale au sein d’un milieu hétérogène. Cette variabilité s’exprime à une échelle très fine (moléculaire). Ce dernier aspect n’est pas considéré dans la littérature. Ces charges sont estimées par la mesure de la capacité d’échanges cationiques et anioniques rapportées à une masse de sol. La notion de densité surfacique de charges n’est pas décrite. Ces charges sont en interaction avec la solution du sol, les éléments dissous, minéraux, matières organiques solubles, contaminants. Au voisinage d’une charge, les ions de la solution s’organisent pour former une couche d’ions qui écrasent les interactions électrostatiques entre charges. L’hydrophobicité des sols détermine les interactions sol-eau-air et participe à la structuration des sols à la circulation de l’eau par la création de chemins préférentiels [Debano 2000]. Malgré son importance il n’existe pas de méthodes pour mesurer l’hydrophobicité des sols. Des outils analytiques assez lourds tentent de quantifier le nombre de carbone aliphatique après extraction des matières organiques. Des travaux récents décrivent la circulation de l’eau dans des sols partiellement mouillant [Bachmann].

L’état hydrique d’un sol se définit comme une teneur en eau mais également par la répartition de l’eau et de l’air au sein de la distribution en taille de pores. La rétention de l’eau dans les sols résulte à la fois des forces capillaires et des forces d’adsorption sur la matrice solide. Ces forces ont pour effet de diminuer la pression de l’eau par rapport à l’eau libre. Si on considère le capillaire comme un cylindre de rayon R, la loi de Laplace s’écrit :

\[
P_0 - P_w = 2 \gamma \cos \theta / R
\]

Où \(\gamma \) est la tension superficielle de l’eau. et \(\theta \) l’angle de contact entre la phase solide et liquide. Cette grandeur est en relation avec la balance hydrophobe hydrophile de la surface de sols. Mais la relation n’est pas connue.

L’objectif de ce stage est d’identifier les mécanismes qui pourraient contribuer à la variabilité des mesures physiques « conductivité hydrauliques et résistances mécaniques » réalisés sur des échantillons de sol de structure intacte. On se propose d’étudier l’influence de la structure et des propriétés de surface dans ces physiques. La démarche repose sur la conception de sols artificiels, pour lesquels les propriétés de surface et leur variabilité spatiale sont imposées. Les propriétés mécaniques, et la conductivité hydraulique de ces sols artificiels seront mesurés.

Le rôle des propriétés de surface dans les systèmes colloïdaux est bien connu. Dans le cas de suspensions colloïdales de particule de silice, les suspensions sont stabilisées par les répulsions électrostatiques. Les charges de surfaces négatives dues aux groupements (SiO-) provoquent une organisation des ions présents dans la solution au voisinage de la surface sur
une épaisseur appelée longueur de Debye-Hückel δ. Cette épaisseur est fonction de la concentration des ions en solution qui détermine la force ionique du milieu :

$$ I = \frac{1}{2} \sum C_i z_i^2 \quad \text{[2]} $$

Où C_i est la concentration des ions et z la valence des ions. À cette distance δ, la portée des interactions électrostatique est diminuée d’un facteur e. À titre d’exemple pour une solution KCL 10^{-3}M, $\delta=10$ nm. Au pH de l’eau, la densité de charges de la silice est variable. Les polymères cationiques s’adsorbent par interactions électrostatiques à la surface de la silice de façon quasi irréversible. Lorsque les surfaces de silice sont totalement recouvertes de polymères elles portent un excès de charges positives. La densité de charges cationiques est plus homogène et ne varie pas avec le pH.

En revanche ces interactions sont totalement négligées dans la description du comportement physique des milieux granulaires du fait des distances importantes entre grains. Lorsque les matériaux granulaires sont constitués de particules de tailles et formes différentes (graviers-sable) la proportion de chaque type de grains affecte l’arrangement des particules et par suite les propriétés physiques et hydriques (densité, porosité et conductivité hydraulique). Par exemple, lorsqu’un arrangement optimal est atteint, l’ensemble des vides entre les particules est fortement réduit et la densité du matériau est maximale (Jones et al. 2002). Une distribution bimodale en taille de grains introduit donc une variabilité dans la préparation des échantillons. Le matériau retenu pour la fabrication des sols artificiels est un sable de distribution en taille étroite. Les propriétés de surface des grains de sables sont modifiées par l’adsorption de polymères synthétiques de caractéristiques connues.
II. Matériels et Méthodes

II.1 Constituants des sols artificiels

II.1.1 Les polymères amphiphiles

Le polymère utilisé dans cette étude fait partie de la famille des XDT Saint 2001. Ces polymères sont synthétisés par le laboratoire de chimie de l’INRA Versailles. C’est un squelette styrénique sur lequel sont substitués deux types de groupements latéraux X% D et (1-X)% de T. Le groupement chimique D porte une chaîne alkyl de 12 C qui apporte une hydrophobicité variable (X varie de 0 à 100%). Les groupements D et T apportent tout deux un cycle aromatiques et une charge positive. Ils sont amphiphiles (soluble dans l’eau et dans certains solvants organiques), totalement cationique. Au cours de ce stage j’ai utilisé le 10DT : degré d’hydrophobicité de 10 % (c'est-à-dire 10 monomères de type D), répartis aléatoirement sur la chaîne.

Figure 6 : Structure générale d’un polymère

II.1.2 Choix du matériau : Sable NE14 de Fontainebleau

Le sable a été choisi comme matériau de base pour la construction des sols artificiels car c’est un constituant naturel des sols. Les milieux sont donc plus « réalistes » que des empilements de sphères. Le sable de Fontainebleau a été retenu car il répond à trois critères : pureté chimique, tailles variables, grande disponibilité. Les fractions disponibles sont < 100 µm, 100, 200 ou 300µm ou leurs mélanges. Seul le sable NE14 a été utilisé dans ce travail.

➢ Analyse chimique : Cette analyse a été effectuée par le fournisseur du matériau (au niveau du laboratoire de l’usine) ; elle révèle que le sable choisi est très pur chimiquement avec une proportion de silice qui dépasse les 99 %.

Une pureté chimique la plus élevée possible était nécessaire pour s’appuyer sur les résultats d’étude de l’adsorption des polymères sur des particules colloïdales de silice.

Analyse granulométrique : Les distributions granulométriques des sables ont été déterminées à l’aide d’un granulomètre laser de type Coulter LS 230 Le principe de cette technique est basé sur l’interaction entre un ensemble de particules et un rayon laser incident. En effet, lorsqu’une particule sphérique est éclairée par un faisceau parallèle de lumière cohérente et monochromatique, il apparaît un motif de diffraction sous forme de franges (ou couronnes) concentriques alternativement claires et sombres. L’intensité du rayonnement diffracté, mesurée en un point donné sur un détecteur, est fonction du diamètre de la particule.

Le matériau brut est mis en suspension dans de l’eau milliQ. La suspension obtenue est préalablement soumise pendant 5 secondes aux ultrasons pour désagglomération.

Microscopie électronique à balayage (MEB) : La morphologie des particules a été observée à l’aide d’un microscope électronique à balayage du type MEB FEI 525M. Le principe de cette technique est basé sur la forte interaction entre les électrons incidents de la source et les électrons secondaires de l’échantillon. Ceci permet de reconstituer l’image de l’objet. Les tensions de travail sont généralement comprises entre 10 et 30 kV ce qui permet d’avoir un grandissement pouvant aller jusqu’à 1000 fois. Les particules de sable ont été métallisées au carbone (une couche qui fait quelques nm) pour les rendre conductrices avant l’observation.
II.2 Préparation des sols artificiels

II.2.1 Modification des sables

On prépare une solution de polymère 10DT de concentration 100ppm, dans laquelle on met 100 g de sable. Le mélange est alors mis en agitation (sur agitateur orbital) pendant 3 heures. Le sable est alors rincé trois fois avec de l’eau milliQ afin d’enlever l’excès du polymère. Le séchage se fait à l’air ambiant pendant 48 heures.

II.2.2 La préparation des mélanges

A l’état sec les sables modifiés et non modifiés sont parfaitement miscibles entre eux et ne présentent pas de différence visible de comportement macroscopique. La densité apparente d’un échantillon de sable est fixée à 1.45 g/cm3 pour les essais mécaniques et 1.6 pour les essais en montée capillaire. Le tableau suivant donne la répartition des masses du sable m_1 / sable modifié m_2 selon les mélanges réalisés pour les essais mécaniques (échantillons de 50 g).

<table>
<thead>
<tr>
<th>sols</th>
<th>Références</th>
<th>Masse m_1 (g) de sable chargé (-)</th>
<th>Masse m_2 (g) du sable modifié chargé (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogènes</td>
<td>0-100</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100-0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Hétérogènes</td>
<td>10-90</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>20-80</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>30-70</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>40-60</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>50-50</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Tableau 2 : Répartition des masses du sable / sable modifié selon les mélanges. Densité 1.45 g/cm3

La phase liquide utilisée est une solution de chlorure de potassium KCl 10^{-3} M, les ions K^+ interagissent avec la surface négative des sables, en revanche il n’y a pas d’interactions des ions chlorure avec les charges du polymère qui sont déjà associés à un Cl$^-$ (voir schéma polymère). Dans le cas des sols homogènes constitués de sable ou de sables modifiés, il existe une répulsion électrostatique entre surfaces de même signe aux points de contact entre grains. Dans le cas des mélanges il existe des points de contacts « attractifs » entre surface de charges opposées et des points de contact « répulsifs ». Les interactions avec la solution saline sont rapportées dans le tableau suivant.
Sols	Interactions dans la zone de contact entre grains	Interaction phase liquide solide
Homogène sable non modifié | répulsion | échange de K⁺ possible
Homogène modifié | répulsion | Pas d’échange
Hétérogènes à compositions variables | Attraction Régulation variables | Echange de K⁺ variables

Tableau 3 : Nature des interactions entres les phases solide et liquide pour les différents sols.

II.3 Comportements hydrophile/hydrophobe des sables.

La mouillabilité est l’habilité d’un liquide à se répandre sur une surface solide. Elle est quantifiée par l’angle de contact d’une goutte à la surface plane du solide. Une surface est considérée comme hydrophile, c’est-à-dire qui a une bonne affinité avec l’eau, si l’angle de contact est proche de 0°. Elle est considérée comme hydrophobe, c’est-à-dire qui a une mauvaise affinité avec l’eau, si l’angle de contact est proche de 90°.

Lorsque qu’une goutte de liquide déposée sur un solide ne s’étale pas complètement, on parle de mouillage partiel. On observe une calotte sphérique caractérisée par un angle de contact θ. Cet angle est lié aux tensions de surfaces entre le liquide, l’air et le solide.

![Figure 8 : Schéma d’un angle de contact](image_url)

Ascension capillaire dans un tube cylindrique : le tube est plongé dans un liquide, une colonne de liquide monte dans le tube par capillarité. L’ascension d’un liquide dans un tube de faible diamètre a pour origine la différence de pression générée par la courbure de la surface du liquide.

![Figure 9 : Progression capillaire dans un capillaire de rayon r](image_url)

La progression du liquide est décrite par l’équation de Washburn.
Les sols artificiels sont un ensemble de capillaires. L’ascension capillaire dépend des propriétés de surface et de la géométrie de l’empilement. Une densité de 1.6 g/cm³ permet d’obtenir une bonne reproductibilité des tassements (variation de densité inférieure 2 %) quelque soit la composition des sols.

II.4 Essai de compaction

II.4.1 Oedomètre hydraulique

L’essai est réalisé à l’aide d’un oedomètre hydraulique de type HYDROCON à cellules hydrauliques. L’oedomètre hydraulique comporte une cellule hydraulique, deux contrôleurs de pression, un capteur de pression interstitiel et un capteur de déplacement axial. Il est équipé d’un logiciel de pilotage et d’acquisition des données appelé GDSLAB.

Figure 10 : Schéma d’un oedomètre hydraulique type HYDROCON
Lors d’un essai de compactage\(^1\), la succession de contraintes imposées sur un échantillon de sable en kPa est : 1, 2, 5, 10, 15, 30, 50, 100, 200, 300, 600, 800, 1000, 800, 600, 300, 200, 100, 50, 30, 15, 10, 5, 2, 1. Chaque pression est appliquée pendant une durée de 5 minutes appelée : palier. Une mesure est prise chaque 10 secondes : la valeur de la pression interstitielle, la valeur du déplacement axial. Le tassement s’effectue en conditions drainées.

II.4.2 Positionnement de l’échantillon.

L’échantillon est placé sec dans la cellule de mesure cylindrique de 5 cm de diamètre et 1.7 cm de hauteur. Une plaque rigide poreuse est positionnée au dessus de l’échantillon. Les contraintes exercées sont réparties de façon uniforme à la surface des cylindres et la déformation est supposée homogène. Le capteur de déplacement et placé au centre de l’échantillon, il représente la déformation homogène du cylindre.

![Figure 11 : Cylindre de sable](image)

La saturation se fait directement au sein de la cellule de l’oedomètre dans laquelle est placé l’échantillon sec. La saturation par une solution KCl \(10^{-3}\) M, se fait par imbibition de façon à diminuer le piégeage de bulles d’air. Le débit de circulation est de 200µl/min imposé par un contrôleur de pression à la base de l’échantillon. C’est la valeur maximale du débit accessible par le dispositif. La durée moyenne de saturation est de 1h30 environ. Une fois l’échantillon saturé, l’excès d’eau est drainé par une vanne située en haut du cylindre. À saturation, la pression interstitielle est constante.

II.4.3 Construction des courbes de compression et détermination de \(P_c\) et \(C_c\)

Les courbes de compression sont construites à partir de données en brutes en relevant la valeur du déplacement axial à la fin de chaque palier de chargement. L’indice des vides à la fin de chaque palier est calculé à partir de l’indice des vides initial et de la variation de volume déterminée pour ce même palier. La courbe de compression représente la

\(^1\) Un essai de compactage comporte deux phases : une phase de compression dont les contraintes appliquées vont de 1kPa à 1000 kPa. La deuxième phase est le relâchement ; pendant laquelle les pressions décroissent de 800 kPa à 1 kPa. Toutefois, lors de ce stage, la phase du relâchement n’a pas été étudiée.
variation de cet indice de vide en fonction de la pression P exercée sur l’échantillon en échelle logarithmique.

Un exemple de courbe de compression est donné ci-dessous. La première partie de la courbe correspond à une déformation élastique de l’échantillon. Au-delà de la pression de préconsolidation, le milieu se déforme de façon linéaire avec la pression exercée.

Figure 12 : Détermination graphique de P_c et C_c

- **Calcul de la pression de préconsolidation P_c**
 Les paramètres mécaniques sont calculés selon une méthode mathématique qui consiste à repérer la position du point d’inflexion dans la courbe de compression. La valeur de P_c est calculée par la formule suivante :

 $P_c = \exp \left((e_{ini} - e_1 - \lambda \cdot \text{Ln} (P_1) + \kappa \cdot \ln (P_{ini})) / (\kappa - \lambda) \right) [4]$

 Avec :
 e_{ini} : indice des vides de l’échantillon à l’état initial
 P_{ini} : pression initiale exercée sur l’échantillon
 e_1 : indice des vides au point d’inflexion de la courbe $e = f (\log P)$
 P_1 : pression exercée sur l’échantillon au point d’inflexion de la courbe $e = f (\log P)$
 λ : pente de la courbe au point d’inflexion $e = f (\log P)$
 κ : pente de la première partie de la courbe (avant le point d’inflexion)

La valeur de C_c est calculée par la formule suivante :

 $C_c = \lambda \cdot 2.3 [5]$
II.5 Essai de perméabilité sous contrainte

Les mesures de perméabilité sont réalisées à partir de l’étude de la circulation de la solution saline à travers l’échantillon à différents débits. L’échantillon est maintenu sous contrainte de façon à diminuer la valeur de conductivité hydraulique et à exacerber l’impact des propriétés de surface entre les différents échantillons. Elles sont réalisées au sein de la cellule hydraulique sous une contrainte effective connue (fixée à 1000 kPa pour notre cas). Pour effectuer ce test de perméabilité, l’échantillon se positionne entre deux plaques poreuses rigides. La perméabilité des plaques poreuses a été mesurée en utilisant un milieu granulaire très perméable (billes de verre). Elle est alors très négligeable par rapport à celle du sable.

L’échantillon de sol est positionné sec dans la cellule hydraulique et saturé selon le même protocole de saturation utilisé pour les mesures mécaniques. Puis la courbe de compression est réalisée comme précédemment sans la phase de relâchement. Le sol est alors maintenu sous une pression de 1000 kPa. La séquence des débits appliqués est en µl/min : 20, 50, 75, 100, 125 et 150. Chaque débit est appliqué pendant 15 minutes. La valeur de la pression interstitielle est enregistrée toutes les 10 secondes ainsi que la valeur du déplacement axial qui renseigne sur la déformation de l’échantillon. Dans les cas les plus favorables, la variation de la pression interstitielle P_i (kPa) en fonction du temps (s) est composée de six plateaux correspondant respectivement aux débits appliqués. Le débit exprimé en $(m^3.s^{-1})$ est alors représenté en fonction du gradient de pression (Pa/m) correspondant aux plateaux. Puis par application de la loi de Darcy, la conductivité hydraulique « sous contrainte » est calculée dans la partie linéaire de la courbe.

Figure 13 : Courbes résultats d’une mesure de perméabilité

a) Variation de la pression interstitielle en fonction du temps.
b) Variation du débit en fonction de la pression interne.
La perméabilité du milieu k (m2) est calculée à partir de la valeur de la pente p de la partie linéaire.

\[K = p \times \mu/A \] \[6\]

μ est la viscosité dynamique en Pa.s = 1mPa.s
A est la section du cylindre m2 = 0.0019635

La conductivité hydraulique K est ensuite calculée :

\[K = k \rho g/ \mu \] \[7\]

Où ρ est la densité du fluide 1000 kg/ m3
g = 9.81 N/kg.
III. Résultats

III.1 Caractérisation des sols artificiels

Le polymère 10DT a été synthétisé pour cette étude. La seule différence dans le déroulement de la synthèse est l’absence de la dernière étape de lyophilisation. J’ai pu vérifier que la mobilité électrophorétique de particules colloïdales de silice totalement recouvertes de ce polymère 10DT était positive. Les quantités de polymères adsorbés à saturation sont de 0.33 mg/m². La surface spécifique des grains développées par les sables est trop faible pour déterminer la quantité de polymère adsorbé. Des travaux antérieurs ont montré que cette quantité était indépendante de la taille des particules dans une gamme de taille allant de 20 nm à 1µm. Les grains de sable modifiés par l’adsorption du 10DT portent une charge positive, les grains modifiés et non modifiés portent globalement une densité charge égale mais de signes opposés. En suspension dans un milieu aqueux, les polymères adsorbés adoptent une conformation très aplatie sur la surface, en raison de leur caractère 100 % cationique. Les chaînes alkyles latérales et cycles aromatiques hydrophobes sont au coeur de cette couche afin de minimiser les surfaces de contact avec l’eau. En revanche pendant le séchage des grains modifiés les groupes hydrophobes du polymère (chaînes alkyles) se placent préférentiellement à l’interface avec l’air modifiant ainsi la mouillabilité des sables.

<table>
<thead>
<tr>
<th>Sable</th>
<th>Moyenne (µm)</th>
<th>Médiane (µm)</th>
<th>D (4,3)</th>
<th>Mode (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE14</td>
<td>258.1</td>
<td>256.1</td>
<td>269.1</td>
<td>245.2</td>
</tr>
</tbody>
</table>

Tableau 4 : Paramètres de l’analyse granulométrique du sable NE14

Aucune différence dans la répartition granulométrique n’a été observée dans le cas des mélanges de sable modifiés et non modifiés. C’est absence d’effet est probablement due à l’agitation nécessaire pour éviter la sédimentation des grains de sable au cours de la mesure (durée d’acquisition 1 minute). De même les épaisseurs de polymères sont trop faibles pour être mesurée par granulométrie laser sur les sables. Elle est de l’ordre de quelques nm dans l’eau avant séchage.
La morphologie des grains a été observée en microscopie. Les images (figure 15 a et b) font apparaître des surfaces de grains rugueuse et une rugosité irrégulière, les surfaces peuvent apparaître parfois presque lisse. Par rapport à un empiètement de sphères, la morphologie des grains engendre une complexité dans la géométrie de l’espace poral mais aussi l’apparition de zones de « contact » entre grains, au sein desquelles les propriétés de surface seront susceptibles de jouer un rôle dans la solidité de ce contact. L’image Figure 16 illustre ces zones de contact dans le cas de sols artificiels hétérogènes.
En fonction du taux de mélange on crée par hétéro-floculation des « agrégats » de taille et nombre variables, faisant ainsi varier le degré d’hétérogénéité de la structure solide. La disposition des différents types de grains est totalement aléatoire et n’implique pas de processus dynamique, les mélanges s’effectuant à sec, les deux types de grains étant parfaitement miscibles. On suppose que la densité des empilements ne dépend pas du type de grains ni de la composition des mélanges. Dans ces conditions, en principe, la composition des mélanges détermine l’hétérogénéité de la fraction solide. Il existe On peut également attendre une gamme de composition pour laquelle les mélanges sont globalement homogène malgré une composition hétérogène. Le polymère 10DT apporte aussi un degré d’hydrophobicité perturbant l’écoulement de l’eau à travers l’échantillon en fonction de la composition des mélanges et des zones d’interaction de « contact ». Cette hydrophobicité de surface peut alors être mesurée en condition statique par la détermination de l’angle de contact d’une goutte d’eau déposée sur une lame de verre saturée de polymère séché à l’air. L’hydrophobicité peut être mesurée en dynamique, par le suivi de l’ascension capillaire. Des premiers résultats sont présentés dans ce travail.

III.2 Etude de l’hydrophobicité des sables

Les figures ci-dessous montrent l’ascension capillaire dans les sols homogènes parfaitement hydrophile ou partiellement mouillant. Les mesures de masse sont effectuées toutes les 0.1 s. Les
figures représentent la variation de masse entre deux mesures au cours du temps.

![Figure 17a](image17a.png) ![Figure 17b](image17b.png)

Figure 17 : Montée capillaire des sols homogènes

L’ascension capillaire est beaucoup plus lente lorsque le sable est modifié par l’adsorption du polymère 10DT. D’après ces graphiques, la colonne de sable hydrophile est parfaitement saturée au bout d’un temps légèrement supérieur à 50 s. Il faut le double de ce temps pour saturer la colonne de sable partiellement mouillant. La variation de la masse est dans ce cas proportionnelle à la racine carré du temps en accord avec le modèle de Wasburn.

Dans le cas de sols de composition hétérogènes, les premiers résultats acquis montrent l’absence d’effet lorsque le taux de sable modifié est inférieur à 30 %.

III.3 Effets des propriétés de surface sur les propriétés mécaniques

Les figures suivantes (18 a et 18b) représentent les courbes de compression obtenues pour les sols artificiels homogènes et hétérogènes (Figures 19 a.b.c.d.e.). Sur chaque figure sont représentées les 5 répétitions réalisées.

- **Milieux homogènes**
18a) Sable pur, $d = 1.5\text{g/cm}^3$
18b) Sable modifié, $d=45\text{g/cm}^3$
Figure 16 : courbes de compression ($e = f (\log P)$) obtenues pour les sols artificiels de composition homogènes.

➢ Milieux hétérogènes ($d=1.45\text{g/cm}^3$)

19a) Mélange 10-90
19b) Mélange 20-80, d
L’allure générale des courbes de compression confirme bien l’état saturé de l’échantillon (pas d’entrée d’air) contrairement à celles des milieux insaturés qui présentent une forme de S (Cui, 2008). En définitive la reproductibilité la plus faible est observée pour les sables non modifiés. Cette observation pourrait être attribuée à la grande variabilité des densités de charges au pH de l’eau. Notons toutefois que ces courbes ont été obtenues pour une densité initiale de 1.5 g/cm3 et doivent être complétées par des mesures à 1.45 g/cm3. Les valeurs de P_c déduites des courbes de compression sont identiques pour le deux sols

Figure 19 : courbes de compression ($e = f (\log P)$) obtenues pour les sols artificiels de composition hétérogènes
homogènes sols P_c est de 57 kPa pour le sable pur alors qu’il est de 59 kPa pour le sable complètement modifié.

La reproductibilité des essais de compaction est très bonne dans le cas des milieux de composition hétérogènes en dépit d’un degré de complexité accru dans la structure et l’écoulement de l’eau. Lorsque la teneur en sable modifié augmente l’attraction dans les zones de contact augmente pour atteindre un maximum probablement pour un mélange 50-50. L’augmentation de l’hydrophobicité augmente continuellement avec la teneur en sable modifié. Ces deux caractéristiques influence la valeur de la pression de pré-consolidation P_c (voir figure 20).

![Figure 20 : Variation de la pression de préconsolidation en fonction du taux du sable modifié dans le mélange](image)

D’après la figure ci-dessus, on note que P_c augmente avec la proportion du sable modifié dans le mélange jusqu’à atteindre une valeur optimale moyenne de 113 kPa située entre 30 et 40 % d’agrégats dans l’échantillon. Au-delà, P_c diminue jusqu’à une valeur de 66 kPa pour le mélange 50-50. Cette diminution de P_c pourrait s’expliquer par le fait qu’on réintroduit des d’interactions électrostatiques répulsives entre les grains modifiés cationiques.

Toutefois, la pression maximale que peut supporter le sable saturé sans se déformer d’une façon irréversible correspond à un taux d’agrégats proche de 40% . La position de ce maximum devra être précisée.

A l’inverse l’index de compression C_c varie peu en fonction de la composition des mélanges comme le montre la figure 21. Les résultats montre l’absence d’effet significatif des propriétés de surface des sols (agrégation et hydrophobicité) sur l’indice de compression C_c.
Figure 21 : Variation de l’indice de compression Cc en fonction du taux d’agrégation

III.4 Effets des propriétés de surface (agrégation + hydrophobicité) sur la perméabilité des sols

III.4.1 Etude des comportement de mélanges lors de la phase de saturation

C’est la phase la plus importante lors d’une mesure de perméabilité à saturation. En principe la saturation totale de l’échantillon de sable conduit à une valeur constante de la pression interstitielle égale à la pression atmosphérique en l’absence de débit. La phase de saturation des échantillons préalables à la mesure de conductivité met en évidence des différences de comportements en fonction de la composition des mélanges au niveau de la variation temporelle de la pression interstitielle.

22a) Variation de la pression interstitielle de l’échantillon au cours de la saturation 20-80

22b) Variation de la hauteur de l’échantillon au cours de la saturation 40-60
La figure 21 (21a et 21b) montre que les effets conjugués de l’augmentation des taux d’agrégation et d’hydrophobicité au niveau d’un échantillon de sable engendre un état initial (pré saturation) très instable avec d’énormes fluctuations au niveau de la pression interstitielle qu’au niveau du tassement de l’échantillon. L’atteinte d’un état stationnaire (Pi constante, pas de tassement de l’échantillon) nécessite une durée de temps relativement longue (environ 2 heures).

Pour les mélanges beaucoup plus agrégés et hydrophobes, la saturation de l’échantillon nécessite une durée de temps bien longue (plus de 3 heures). La pression des pores est relativement importante au début de la saturation (16 kPa) et elle ne cesse de diminuer tout au long de cette phase sans jamais atteindre une valeur constante (Figure 23).

III.4.2 Conductivité hydraulique des mélanges

- *Milieux non tassés*

Des mesures de conductivité hydraulique ont été réalisées pour le sable NE14 pur sans compression de l’échantillon. Ces mesures ont montré qu’avec un sable complètement hydrophile on peut toujours stabiliser les pressions de pores (c'est-à-dire avoir des plateaux) de l’échantillon quelque soit les débits appliqués (Figure 24a)). Par conséquent, la loi de Darcy est applicable sur la totalité de la courbe $Q = f(Pi)$ car celle-ci est une droite linéaire (Figure 24b)). On peut ainsi calculer la conductivité hydraulique du sable complètement hydrophile, non agrégé et non tassé qui est de $2.5 \times 10^{-1} \text{ m/s}$.
Figure 24 : Mesure de perméabilité du sable pur à une densité de 1.5 g/cm3

Des mesures de perméabilité ont été faites sur tous les mélanges réalisés et ont montré que pour les mélanges tassés très hydrophobes (avec un taux d’hydrophobicité qui va au-delà de 20 %), il est très difficile de mesurer la conductivité hydraulique de l’échantillon. En raison de l’aspect dynamique de transmission des contraintes
Seul le résultat de la mesure de perméabilité du mélange 20-80 a été retenu parce qu’on arrive à maintenir la pression interstitielle constante avec le débit appliqué. La relation de Darcy pour le calcul de la conductivité hydraulique de ce mélange est alors applicable ; elle donne une valeur de 2×10^{-4} m/s.
Figure 25 : Mesure de la perméabilité du mélange 20-80 sous une contrainte de 1000 kPa

La chute de la pression interstitielle (Figure 25a)) résulte du changement brusque du débit appliqué sur l’échantillon entre la phase de saturation (Q = 200µl/min) et la première phase de mesure de la perméabilité (Q = 50µl/min).

Le mélange 30-70 présente un état intermédiaire ; c’est la limite entre les mélanges moins hydrophobes et très hydrophobes. Pour ce mélange, on n’arrive à avoir un état stationnaire qu’au niveau des deux premiers paliers (débits 50 et 75 µl/min).

Figure 26 : Mesure de la perméabilité du mélange 30-70 sous une contrainte de 1000 kPa
La chute de la pression interstitielle au niveau du troisième palier à un débit de 100µl/min (Figure 26a)) a pu être expliqué par un réarrangement des particules au niveau de l’échantillon. Ce réarrangement est remarquable au niveau de la courbe de déformation associée (Figure 26b)) sous l’effet de la contrainte appliquée et la pression exercée par l’écoulement.

Au-delà d’un taux d’hydrophobicité de 30 %, on ne peut plus avoir un état stationnaire de la pression interstitielle en fonction du temps (Figure 26) avec les débits imposés (20, 50, 75, 100, 125, 150 µl/mn) ni pendant des durées de temps de 15 minutes et même de 30 minutes. (Figure 27)

Figure 27 : Variation de la pression interstitielle en fonction du temps (s) pour 3 débits 50, 75 et 100 µl/min) pour trois sols
IV. Discussion et perspectives.

L’étude que nous avons menée constitue une approche originale de l’influence des propriétés de surface du sol dans les propriétés hydrauliques et mécaniques. Dans ce travail, les mesures ont été réalisées à saturation.

La modification de propriétés de surface a pu être vérifiée par les mesures d’ascension capillaire. Les résultats obtenus sur le sable modifiés par le 10DT sont caractéristiques d’un milieu partiellement mouillant. Il faut noter, l’importance de l’effet comparé au taux de substitution du polymère (seulement 10 % de chaînes alkyles).

La pression de pré-consolidation traduit la pression maximale que le sol supporte sans déformation. Elle varie avec la composition de mélanges pour atteindre une valeur maximale de 113 kPa. Le maximum est compris entre 30 et 40 % de sable modifié. Sa valeur devra être précisée. Au-delà de cette valeur, Pc diminue. Ces variations en fonction de la composition des mélanges sont attribuées (i) à l’apparition de zones de contact attractives entre grains (ii) à la modification de l’affinité de l’eau vis à vis du solide.

La pression de pré-consolidation traduit la pression maximale que le sol supporte sans déformation. Elle varie avec la composition de mélanges pour atteindre une valeur maximale de 113 kPa. Le maximum est compris entre 30 et 40 % de sable modifié. Sa valeur devra être précisée. Au-delà de cette valeur, Pc diminue. Ces variations en fonction de la composition des mélanges sont attribuées (i) à l’apparition de zones de contact attractives entre grains (ii) à la modification de l’affinité de l’eau vis à vis du solide.

La conductivité hydraulique mesurée sous contrainte est sensible à la mouillabilité des surfaces qui diminue sa valeur. La mouillabilité des surfaces modifie également la dynamique des systèmes en particulier la transmission des contraintes. Il s’avère souvent difficile d’atteindre une valeur d’équilibre de la pression interstitielle nécessaire à la mesure de la conductivité sous contrainte.

En mécanique, le couplage de l’hydrophobicité et de l’agrégation ne nous a pas permis de séparer les effets de l’une ou l’autre sur les propriétés mécaniques du sable. L’utilisation du polymère 0DT demeure alors indispensable dans ces travaux. Le recouvrement de la surface des particules de sable par ce polymère permet de leur attribuer l’aspect cationique de ce dernier sans pour autant apporter de une hydrophobicité à l’échantillon. Ceci favorise alors la dissociation des deux processus en annulant l’effet des grains hydrophobes.

Vu les longues séries de mesures (5 répétitions par lot de mélanges), certains paramètres n’ont pas pu être définis avec précision. Pour la suite de ces travaux de mécanique il est recommandé de ;
- Préciser la valeur de la pression de préconsolidation maximale Pc en milieu saturé ainsi que le mélange associé.
- Augmenter la contrainte maximale de compactage de 1000 kPa à 1500 kPa.
- Compléter la gamme de mélanges effectués en allant au delà du mélange 50-50 et en faisant les 60-40, 70-30, 80-20 et 90-10.
Références bibliographiques

